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The total number of ground states for short-range Ising spin glasses, defined on diamond hierarchical lattices
of fractal dimensionsd52, 3, 4, 5, and 2.58, is estimated by means of analytic calculations~three last
hierarchy levels of thed52 lattice! and numerical simulations~lower hierarchies ford52 and all remaining
cases!. It is shown that in the case of continuous probability distributions for the couplings, the number of
ground states is finite in the thermodynamic limit. However, for a bimodal probability distribution~6J with
probabilitiesp and 12p, respectively!, the average number of ground states is maximum for a wide range of
values ofp aroundp5

1
2 and depends on the total number of sites at hierarchy leveln, N(n). In this case, for

all lattices investigated, it is shown that the ground-state degeneracy behaves like exp@h(d)N(n)#, in the limit
N(n) large, whereh(d) is a positive number which depends on the lattice fractal dimension. The probability of
finding frustrated cells at a given hierarchy leveln, F (n)(p), is calculated analytically~three last hierarchy
levels for d52 and the last hierarchy of thed53 lattice, with 0<p<1!, as well as numerically~all other

cases, withp5
1
2 !. Except ford52, in which caseF (n)( 1

2 ) increases by decreasing the hierarchy level, all other

dimensions investigated present an exponential decrease inF (n)( 1
2 ) for decreasing values ofn. For d52 our

results refer to the paramagnetic phase, whereas for all other dimensions considered@which are greater than the
lower critical dimensiondl (dl'2.5)#, our results refer to the spin-glass phase at zero temperature; in the latter
casesh(d) increases with the fractal dimension. Forn@1, only the last hierarchies contribute significantly to
the ground-state degeneracy; such a dominant behavior becomes stronger for high fractal dimensions. The
exponential increase of the number of ground states with the total number of sites is in agreement with the
mean-field picture of spin glasses.@S1063-651X~99!07910-6#

PACS number~s!: 05.50.1q, 64.60.Ak, 75.10.Nr, 75.50.Lk
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I. INTRODUCTION

A satisfactory understanding of short-range spin glas
@1–3# is still missing, in spite of a considerable amount
effort dedicated to this problem. Most of the definite resu
are at mean-field level, based on the solution of the infin
range-interaction Sherrington-Kirkpatrick model@4#. Such a
model predicts a spin-glass phase characterized by a com
cated free-energy landscape with many minima, properly
scribed by an infinite number of order parameters, i.e.,
order-parameter function@5#. An equivalent approach, a
proposed by Thouless, Anderson, and Palmer~TAP! @6#,
should be to solve the complete set of mean-field equati
the so-called TAP@6# equations. This turns out to be a di
ficult task, since the average number of solutions of the T
equations grows exponentially with the total number of si
N @7,8#,

@NS#J;exp~aN!, ~1.1!

where @ #J denotes an average over the disorder anda
5a(h,T) is a function of both external fieldh and tempera-
ture T. In the paramagnetic phase,a(h,T)50, whereas
a(0,0)>0.20 @7,8#. These solutions may not be all physic
~some of them may be unstable! throughout the spin-glas
phase, though one can show that they are all stable atT50
@7#. If one associates eachT50 solution to a ground state
PRE 601063-651X/99/60~4!/3761~10!/$15.00
s
f
s
-

li-
e-
n

s,

P
s

then mean field predicts an average number of ground st
which diverges exponentially, in the thermodynamic lim
according to Eq.~1.1!.

Whether such a mean-field picture prevails in real~short-
range! systems is a very controversial point@1#. In particular,
the ground-state degeneracy and a proper understandin
the phase-space structure are questions which remain u
swered. Unfortunately, exact results for short-range s
glasses are very scarce; such systems on Bravais lattices
most of the time, investigated by numerical methods, l
power-series expansions and simulations.

The search for the ground states of short-range s
glasses has attracted the attention of many workers thro
the last two decades@9–28#, leading to the development of
large variety of algorithms. It is well accepted nowadays t
due to the existence of many low-energy metastable sta
separated by energy barriers, the usual Monte Carlo me
finds serious difficulties in providing the true ground sta
of spin glasses; one needs alternative numerical~or analyti-
cal! techniques to work at zero temperature. The most in
tive approach, known as the minimal matching of frustra
plaquettes, is based on the idea of Toulouse@9# and consists
in defining a ground-state configuration through a pairw
connection of the frustrated plaquettes by strings, in suc
way as to minimize the total sum of string lengths. A dire
counting of ground states through this method is feasible
two-dimensional lattices@10–12,16#, but becomes computa
3761 © 1999 The American Physical Society
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3762 PRE 60E. M. F. CURADO, F. D. NOBRE, AND S. COUTINHO
tionally impracticable for three-dimensional systems@10#.
Other methods, like mappings into combinatorial optimiz
tion problems@13,14,20,24#, graph expansions@18#, biologi-
cally motivated algorithms@21–23,26–28#, and Monte Carlo
multicanonical techniques@17#, have produced significan
progress in the knowledge of spin-glass ground states.
multicanonical technique of Berg, Hansmann, and Celik@17#
is probably the first Monte Carlo method to generate succ
fully the ground states of the three-dimensional6J spin
glass; their data are consistent with a simple ground-s
structure, typical of the droplet scaling ansatz@29–32#, al-
though a mean-field-like picture is not ruled out. The rec
algorithm introduced by Hartmann@22#, combining genetic
algorithms with cluster-exact approximations, yields grou
states for three-dimensional spin glasses within a polynom
time @;O(N3)#. Applying this method for6J spin glasses
Hartmann found evidence of a nontrivial ground-state str
ture ~typical of mean-field theory! on a cubic lattice@26#, but
not on a square lattice@28#. Therefore, the study of the spin
glass ground states appears as a very promising tool f
correct understanding of the structure of the spin-glass ph

Although hierarchical lattices are not Bravais lattice
they are much easier to handle~under real-space renorma
ization group!, in such a way that exact results@33,34# may
be obtained for short-range systems. For pure systems
fined on Bravais lattices, certain renormalization-group eq
tions are obtained through decimation of spins; in the co
sponding hierarchical lattices, such a procedure is exac
models with discrete classical spin variables, leading, wit
a few renormalization steps, to nonproliferat
renormalization-group recursion relations connecting t
successive hierarchy levels. However, for random syste
the recursion relations depend on random variables,
scribed by probability distributions. The process of followin
the evolution of the probability distributions as the hierarc
levels change may become a difficult task to carry out
actly; most of the time one makes use of numerical metho
Therefore, real-space renormalization-group techniques,
random systems on hierarchical lattices, are usually appr
mate; however, depending on the kind of approximatio
involved, the corresponding renormalization-group rec
may come up as a good approximation for the hierarch
lattice.

For integer fractal dimensions, hierarchical lattices m
be considered as approximations of Bravais lattices
should lead to some physical insight into the behavior of r
spin glasses. In spite of its simplicity, the diamond hierarc
cal lattices~DHLs! have been successful in estimating low
critical dimensions and critical temperatures of Ising s
glasses@35#, almost a decade before their confirmati
through power-series expansions@36# and numerical simula-
tions @37# on Bravais lattices.

In this paper we estimate the average number of gro
states for nearest-neighbor-interaction Ising spin glasses
fined on DHLs of fractal dimensionsd52, 3, 4, 5, and 2.58
For that, we make use of analytic calculations, as well as
numerical simulations. In the next section we define
model and the formalism employed in the calculation of
ground-state degeneracy. In Sec. III we present the res
-
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for a DHL with fractal dimensiond52, and, in Sec. IV,
those for dimensionsd53, 4, 5, and 2.58. Finally, in Sec. V
we present our conclusions.

II. MODEL AND FORMALISM

Let us consider the Ising spin glass, defined through
Edwards-Anderson Hamiltonian@38#,

H52(̂
i j &

Ji j SiSj ~Si561!, ~2.1!

where theJi j ’s represent random quenched coupling co
stants following a certain probability distributionP(Ji j ). The
sum (^ i j & applies to nearest-neighbor pairs of spins on
DHL, generated in such a way that at each step a bon
replaced by a diamondlike cell containingL parallel
branches, each with two bonds in series~scaling factorb
52!, as shown in Fig. 1; its fractal dimension isd
5(ln 2L)/(ln 2). At the zeroth hierarchy level one starts wi
a single bond, which is replaced by a single cell at hierarc
level n51. By following this procedure, one gets for th
DHL at its nth hierarchy level the total number of cel
(Nc

(n)) and sites (N(n)) given, respectively, by

Nc
~n!5~2L !n21[~2d!n21, ~2.2a!

N~n!521L
~2L !n21

2L21
, ~2.2b!

and in the limitn@1, one has

N~n!'
L

2L21
~2L !n5

L

2L21
2LNc

~n!5
L

2L21
~2L !2Nc

~n21!

5¯ . ~2.2c!

For integer values ofd, the results obtained on DHLs may b
considered as approximations for the corresponding Bra
lattices.

We start with a DHL at thenth hierarchy level with
P(n)(Ji j

(n)) as either a continuous or a bimodal one,

FIG. 1. The basic cell of the diamond hierarchical lattice w
fractal dimensiond5(ln 2L)/(ln 2). The solid circles denote the in
ternal sites, whereas the open ones represent the external sites~con-
nected to other cells of the lattice!.
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P~n!~Ji j
~n!!5pd~Ji j

~n!2J!1~12p!d~Ji j
~n!1J!. ~2.3!

We will restrict our analysis to zero temperature. T
multiplicity of ground states is produced by frustration@9#
effects; let us now adapt this concept for the cell in Fig.
We say that a given cell is frustrated whenever a bond c
figuration leads to at least one brancha (a51,2,...,L) with
an arbitrarinessin the state of its internal spin, i.e., the tot
energy of the cell remaining unchanged under the spin
Therefore, each branch in this situation will contribute with
factor of 2 for the multiplicity of states of the cell; if a ce
containsa branches with such arbitrariness, it will contribu
for the total number of ground states of the DHL with
multiplicity factor,

ga52a ~a51,2,...,L !. ~2.4!

From now on, a given frustrated cell, associated with a m
tiplicity factor ga , will be referred to as a cell of the typea
~or simply, as ana cell!. The trivial caseg051 ~nonfrus-
trated cell! is obviously excluded from the set ofa cells
defined in Eq.~2.4!.

For a given bond configuration defined byP(n)(Ji j
(n)), one

may count partially the average number of ground states
a DHL at thenth level, by fixing the terminal spins of eac
unit cell @i.e., the spins that connect the cell to other on
~open circles in Fig. 1!# and counting the distribution ofa
cells. In this case, only the internal spins~full circles in Fig.
1! of each unit cell will contribute to the multiplicity o
ground states. We shall denote the number representing
partial counting by@G (n)#J(n), where@ #J(n) represents an av
erage over the coupling probability distribution at leveln,
P(n)(Ji j

(n)). For a hierarchical lattice at itsnth level, all unit
cells present one terminal spin that belongs to the (n21)th
level, whereas the other one is associated with a lowest-l
hierarchy; the terminal spins that belong to the (n21)th
level become internal ones at leveln21, whereas those o
the lowest-level hierarchies become terminal spins at le
n21; a similar procedure holds for the (n22)th level, and
so on. Due to this, in order to calculate the average num
of ground states at leveln, we will take advantage of the
real-space renormalization-group approach for DHLs. In
case of spin glasses, throughout the renormalization pro
the probability distribution will change its shape, evolving
particular distributions according to the respective phase
it will approach a ‘‘fixed-point’’ distribution, characteristic
of the corresponding critical frontier@35#. The decimation of
the internal spins of the cell in Fig. 1 leads to a renormaliz
coupling between sitesi and j @35#,

Ji j8 5
1

2 (
l 51

L

~ uJil 1Jl j u2uJil 2Jl j u!, ~2.5!

where Jil and Jl j represent the two original coupling con
stants associated with a given branchl connecting the exter
nal sites of the cell. Following the arguments above,
average number of ground states at hierarchy leveln may be
written as
.
n-

.

l-

or

s

his

el

el

er

e
ss

or

d

e

@NGS
~n!#J~n!5@G~n!#J~n!@G~n21!#J~n21!

3@G~n22!#J~n22!¯@G~1!#J~1!A, ~2.6!

where the factorA corresponds to the number of states as
ciated to a single bond~hierarchy level 0!.

Let us now describe how to calculate@G (k)#J(k) (k5n,n
21,n22,...,1). First, letFa

(k) be the probability of finding a
frustrated cell of the typea, at the hierarchy levelk; obvi-
ously, Fa

(k) depends on the parameters of the distribut
P(k)(Ji j

(k)) @which, in turn, may depend on the parameters
the initial distributionP(n)(Ji j

(n))#, e.g., in the6J case@Eq.
~2.3!#, Fa

(k)[Fa
(k)(p). The average number ofa cells in the

hierarchy levelk is given by

fa
~k!5Nc

~k!Fa
~k! , ~2.7!

whereNc
(k) is the total number of unit cells, as defined in E

~2.2a!. Obviously, the total probability of finding a frustrate
cell and the average number of frustrated cells at hierar
level k are given, respectively, by

F ~k!5 (
a51

L

Fa
~k! , f~k!5 (

a51

L

fa
~k!5Nc

~k!F ~k!. ~2.8!

If one includes the nonfrustrated cells~associated probability
F0

(k)! one gets the normalization condition(a50
L Fa

(k)51.
Hence, the average number of ground states of the DH
hierarchy levelk, obtained by fixing the terminal spins o
each unit cell, is given by

@G~k!#J~k!5 )
a51

L

~ga!fa
~k!

5~g~k!!f~k!
, ~2.9!

where

g~k![ )
a51

L

~ga!~fa
~k!/f~k!!5 )

a51

L

~ga!~Fa
~k!/F~k!!. ~2.10!

One may define the ground-state complexity@39#,

I 5kB ln@NGS
~n!#J~n!5kBS ln A1 (

k51

n

ln@G~k!#J~k!D
5kBS ln A1 (

k51

n

f~k! ln g~k!D , ~2.11!

which is an extensive quantity if

@NGS
~n!#J~n!;exp@h~d!N~n!#, ~2.12!

with h(d) being a constant for each DHL of fractal dime
sion d. The quantitykB ln g(k)@5(kB ln@G(k)#J(k))/f(k)# may be
identified as the partial contribution, per frustrated cell, to
ground-state complexity, i.e., as the partial complexity p
frustrated cell; from now on, we shall refer tog (k) as the
average number of ground states per frustrated cell~terminal
spins fixed! at hierarchy levelk.

The main difficulty of the present approach consists
calculating@G (k)#J(k), or equivalently, the probabilitiesF}

(k) ,
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from which one may obtain the average number ofa cells
using Eq.~2.7!. Although this can be done analytically i
some cases~e.g., for the last hierarchies of ad52 6J DHL!,
it may become a hard task for DHLs of high fractal dime
sions. However, such quantities can be easily compu
through a numerical simulation, as we describe now. For
purpose, one should generate a large number of diffe
disorder samples$Ji j

(k)% of a given DHL and count, for each
sample, the number ofa cells in order to computeFa

(k) and
consequently, all the quantities defined in Eqs.~2.7!–~2.10!.
In addition to that, one also needs to renormalize the pr
ability distribution, at each hierarchy level, using the rec
sive relation~2.5!; starting the simulation at thenth hierar-
chy level @with a given distribution P(n)(Ji j

(n))#, one
generatesP(n21)(Ji j

(n21)), which should be stored to be use
at hierarchy n21, which in its turn, will generate
P(n22)(Ji j

(n22)), and so on. Instead of working with th
whole DHL, we generate at each hierarchy levelk a number
M of independent unit cells, with coupling constants distr
uted according toP(k)(Ji j

(k)), from which one may compute
all the quantities in Eqs.~2.7!–~2.10!, andP(k21)(Ji j

(k21)). In
order to get a good statistics on each hierarchy level,
repeat this process forNs different samples~different se-
quences of random numbers!. If one starts with a bimoda
probability distribution at thenth hierarchy level, a prolifera-
tion of d functions will occur throughout the renormalizatio
process; this method allows one to compute easily
weights of thed functions at each hierarchy levelk, in order
to obtainP(k21)(Ji j

(k21)). One expects that ifM andNs are
large enough, such a procedure should give results simila
those obtained by considering averages over diso
samples of the whole DHL. For the results that will be p
sented in the next sections, we have usedM5107 and Ns

5200. For a symmetric bimodal distributionP(n)(Ji j
(n)) we

have performed some analytic calculations in DHLs of fra
tal dimensionsd52 andd53; it was possible to check th
accuracy of our simulations in such cases. The scheme
scribed above yielded estimates forF (k), g (k), and thed
weights, in agreement up to three decimal digits with
analytic results.

In what follows we shall treat the cased52 separately
from those whered is greater than the lower critical dimen
sion dl ~dl'2.5 @40–42#!. In the former, there is no spin
glass phase@31,35–37,40,41#, in such a way that any distri
bution will converge, under the renormalization process, t
single d function centered at the origin~characteristic of a
paramagnetic phase!. In the latter ones, all distributions wil
approach, after many iterations, a continuous distribut
with increasing variance, associated with the spin-gl
phase@40#.

III. CASE d52

Let us first consider an arbitrary continuous distributi
P(n)(Ji j

(n)). It is clear that for a frustration to occur one mu
have a branchl with strictly uJil u5uJl j u; since this never
happens for continuous probability distributions, there w
be no frustrated cells~Fa

(k)50; a51,2,...,L! at the highest
hierarchies ~e.g., n, n21, and n22!. However, in the
lowest-level hierarchies, the distribution will approximate
-
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d function centered at the origin and one will have multipli
ity of states produced by zero coupling constants. Since s
frustration effects only occur fork!n (n@1), and consid-
ering the fact that the number of sites of the high hierarch
is much larger than the ones of the low hierarchies (N(n)

;22n), one expects to findf (k) finite in this limit. For a null
single bond~hierarchy 0!, one has the factorA54. Putting
all these results together into Eq.~2.11!, one will get a finite
complexity, negligible in the thermodynamic limit.

For the remainder of this section we will be restricted
the bimodal probability distribution of Eq.~2.3!. For k5n,
there are only two types of frustrated cells~each containing
one branch with arbitrariness!, in such a way that

F ~n!~p![F1
~n!~p!54p3~12p!14p~12p!3, g1

~n!52,

which lead to the average number of frustrated cells,

f~n!~p![f1
~n!~p!522~n21!$4p3~12p!14p~12p!3%,

~3.1!

and to g (n)52 ~independent ofp!. In order to proceed to
hierarchy leveln21 one needs the renormalized probabil
distribution,

p~n21!~Ji j
~n21!!5P2J

~n21!~p!d~Ji j
~n21!22J!1P0

~n21!

3~p!d~Ji j
~n21!!1P22J

~n21!~p!

3d~Ji j
~n21!12J!, ~3.2!

which has turned into a three-d form, with

P2J
~n21!~p!5p412p2~12p!21~12p!4, ~3.3a!

P0
~n21!~p!54p3~12p!14p~12p!3, ~3.3b!

P22J
~n21!~p!54p2~12p!2. ~3.3c!

The analysis of all frustrated cells associated to Eq.~3.2!
leads to

F ~n21!~p!54@P2J
~n21!~p!#3P22J

~n21!~p!14P2J
~n21!~p!@P22J

~n21!

3~p!#312@P2J
~n21!~p!#2@P0

~n21!~p!#2

14P2J
~n21!~p!@P0

~n21!~p!#2P22J
~n21!~p!

12@P0
~n21!~p!#2@P22J

~n21!~p!#214P2J
~n21!~p!

3@P0
~n21!~p!#314@P0

~n21!~p!#3P22J
~n21!~p!

1@P0
~n21!~p!#4,

which become, after substituting Eqs.~3.3! and using the
softwareMATHEMATICA 3.0 to simplify,

F ~n21!~p!5216p2~123p14p222p3!2~2318p216p2

216p31120p42224p51224p62128p7

132p8!. ~3.4!
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One hasg1
(n21)52 for all frustrated cells, except for the cas

of a cell with all four bonds Ji j
(n21)50 $F2

(n21)(p)
5@P0

(n21)(p)#4; g2
(n21)54}.

For k5n22, the probability distribution is composed b
five d’s,

P~n22!~Ji j
~n22!!5P4J

~n22!~p!d~Ji j
~n22!24J!1P2J

~n22!

3~p!d~Ji j
~n22!22J!1P0

~n22!~p!d~Ji j
~n22!!

1P22J
~n22!~p!d~Ji j

~n22!12J!1P24J
~n22!

3~p!d~Ji j
~n22!14J!, ~3.5!

whose weights are functions of those at hierarchy leven
21 @Eqs.~3.3!#; after usingMATHEMATICA 3.0 to simplify,

P4J
~n22!~p!5~128p132p2280p31152p42224p51224p6

2128p7132p8!2, ~3.6a!

P2J
~n22!~p!5216p~21113p288p21404p321408p4

13920p528928p6116 840p7226 400p8

134 144p9235 712p10129 248p11217 920p12

17680p1322048p141256p15!, ~3.6b!

P0
~n22!~p!516p2~123p14p222p3!2~5224p196p2

2240p31456p42672p51672p62384p7

196p8!, ~3.6c!

P22J
~n22!~p!52128p3~2113p24p212p3!3~122p16p2

28p314p4!, ~3.6d!

P24J
~n22!~p!564~211p!4p4~122p12p2!4. ~3.6e!

Similarly to what was done for hierarchy levelsn and n
21, one may calculateF (n22)(p). In Fig. 2 we exhibit thep
dependence of the total probability for finding frustrat

FIG. 2. The total probability of finding frustrated cells, for th
DHL of fractal dimensiond52, at hierarchy levelsk5n2m (m
50,1,2), as a function of the initial ferromagnetic coupling weig
p of the bimodal distributionP(n)(Ji j

(n)).
cells at hierarchy levelsk5n2m ~m50, 1, and 2!, obtained
through the method described above. Whenp→1 ~or
equivalently,p→0! one trivially obtainsF (n2m)(p)→0 i.e.,
f (n2m)→0, whereasA52; this leads to the expected resu
@NGS

(n)#J(n)52. For a wide interval ofp around p5 1
2 , one

notices that the total probability of finding frustrated ce
decreases as one goes from hierarchy leveln to n21, a direct
consequence of the appearance of thed function at the origin
@see Eq.~3.2!#; however, if m.1 this probability always
increases. One should notice that the curves in Fig. 2 pre
flat maxima, indicating that the maximum ground-state d
generacy occurs within a wide range of values ofp around
p5 1

2 . In the discussion which follows we will be restricte
to p5 1

2 , although our results apply for a widerp interval.
Even if the number ofd functions grows very fast in the

next steps, one may easily see that the one centered aJi j
(k)

50 will prevail among the others, for a wide range of valu

of p aroundp5 1
2 . Indeed, one has the weightsP0

(n)( 1
2 )50,

P0
(n21)( 1

2 )5 1
2 , andP0

(n22)( 1
2 )5 19

32 50.593 75.
We have performed numerical simulations to comp

P0
(n2m)(1/2), Fa

(n2m)(1/2) @and consequently, all the quant
ties defined in Eqs.~2.7!–~2.10!# for systems up tom510.
The numerical estimates form50, 1, and 2 are in full agree
ment ~up to three decimal digits! with the exact results ob
tained above. The results of our simulations are exhibited
Figs. 3~a!–3~c!; one sees that after a few renormalizati
steps~roughly, six iterations! the probability distribution ap-
proachesP(k)(Ji j

(k))5d(Ji j
(k)), characteristic of a paramag

netic phase. In this limit, only thea52 cells will contribute,

i.e., F (k)( 1
2 )[F2

(k)( 1
2 )51 and so,

f~k!5Nc
~k!522~k21!, g~k!54. ~3.7!

The complexity in Eq.~2.11! becomes

I 5kBS ln A1 (
k5n26

n

f~k! ln g~k!1 (
k51

n27

Nc
~k! ln 4D , ~3.8!

and using the analytical results (k5n, n21,n22), as well
as those obtained from the numerical simulations (k,n
22),

(
k5n

n26

f~k! ln g~k!50.346 57Nc
~n!10.368 24Nc

~n21!

10.497 16Nc
~n22!1~0.701 52

60.000 06!Nc
~n23!10.984 77Nc

~n24!

11.254 53Nc
~n25!11.373 28Nc

~n26! .

In the equation above, we have written the error bars du
the numerical simulations for the casek5n23 only; as will
be seen, the error bars fork,n22 will not affect the most
significant digits of the final result. In the limitn@1 one has,
from Eq. ~2.2c!,

N~n!' 2
3 ~4!n5 8

3 Nc
~n!5 32

3 Nc
~n21!5¯ ,

and then

t
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FIG. 3. Results from numerical simulations of DHLs of seve
fractal dimensionsd, at hierarchy levelsk5n2m. At the nth hier-
archy level, a symmetric bimodal (p5

1
2 ) probability distribution

was used. ~a! The weight of the d function at the origin

P0
(n2m)( 1

2 ) @one should remember that in the caseL53 (d'2.58)
there is nod function at the origin#. ~b! The total probability of

finding frustrated cellsF (n2m)( 1
2 ). ~c! The average number o

ground states per frustrated cellg (n2m)( 1
2 ); in the cased55, the

point g (n) lies outside the plotted interval (g (n)'86).
(
k5n

n26

f~k! ln g~k!5~0.129 9610.034 5210.011 6510.004 11

10.001 4410.000 13!N~n!,

where we have discarded the error bars due to the nume
simulations~which lead to contributionsO;1027 in the sum
above!. The truncation of the series generates an additio
numerical uncertainty; since all terms in our series are p
tive, such a truncation will underestimate the total sum, le
ing to positive error bars. Using the fact that

(
k51

n27

Nc
~k! ln 45 ln 4(

k51

n27

4~k21!5 ln 4~ 1
12 4~n26!2 1

3 !

'4.231025N~n!,

one gets

(
k51

n

f~k! ln g~k!5~0.182 2720.000 00
10.000 04!N~n!. ~3.9!

In the equation above, the upper error bar corresponds to
series truncation at hierarchy levelk5n26, whereas the
lower one corresponds to the numerical simulationsO
;1027). One sees clearly that since the number of si
grows as 4k, the contributions of the last hierarchies dom
nate among the others. Although nearly all cells beco
frustrated fork,n26, their contribution to the total numbe
of ground states is negligible, in the thermodynamic lim
Considering only the hierarchy levelsk5n to k5n26, one
gets the behavior predicted in Eq.~2.12!, within a four-
decimal-digit accuracy inh(2); thecontribution of all other
hierarchies will lead to corrections in the fifth decimal dig
of h(2).

It should be noticed that the results above are valid for
zero-temperatureparamagnetic phaseassociated with the
model~2.1!, defined on a DHL of fractal dimensiond52; in
the next section, we will estimate the total number of grou
states of the spin-glass phase for several DHLs with fra
dimensions greater than the lower critical dimensiondl .

IV. CASES d>dl

In this section we consider DHLs with fractal dimensio
d.dl ~number of branchesL>3 in the cell of Fig. 1!. It is
well known that in such cases different symmetric probab
ity distributionsP(n)(Ji j

(n)) lead to a spin-glass phase at lo
temperatures, which extends down to zero tempera
@31,35,40,41#. Contrary to what happened in the precedi
section, now we will calculate the average number of grou
states associated with a spin-glass phase.

Any continuousP(n)(Ji j
(n)) will converge, after a few it-

erations, to a distribution~very close to a Gaussian one@39#!
with increasing variance, ifd.dl . Since one has zero prob
ability of finding a branchl with uJil u5uJl j u, there will be no
frustrated cells at any hierarchy level. At the zeroth hier
chy, the single bond may be either ferromagnetic~two states!
or antiferromagnetic~two states! and so,A52 for a given
disorder configuration. Therefore, Eq.~2.6! yields only two
states~related to each other by reflection symmetry!,

l
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@NGS
~n!#J~n!52 for any continuousP~n!~Ji j

~n!!. ~4.1!

From now on we will be restricted to the bimodal pro
ability distribution of Eq.~2.3!. The proliferation ofd func-
tions becomes faster when the dimensionality increases
deed, one may easily see that for an arbitrary inte
dimensiond, under the first renormalization transformatio
one will go from the bimodal distribution of Eq.~2.3! to a
composition of 2(d21)11 d functions centered atJi j

(n21)

522(d21)J, 22(d22)J,...,22J, 0, 2J,..., 2(d22)J, 2(d21)J,
respectively.

In the limits p→1 andp→0 the weight of thed function
corresponding to the strongest renormalized interaction
prevail among the others and so,Fa

(k)(p)→0; sinceA52,
one gets also@NGS

(n)#J(n)52.
Let us analyze first the interesting~and hopefully relevant

to real systems! case of ad53 DHL.

A. d53

One gets for hierarchy leveln

P~n!~p!58p7~12p!124p6~12p!2156p5~12p!3

148p4~12p!4156p3~12p!5124p2~12p!6

18p~12p!7, ~4.2!

which is represented in the plot of Fig. 4. Similarly to wh
happened in the cased52, one notices that the maximum
probability of finding frustrated cells occurs within a wid
range of values ofp aroundp5 1

2 . The renormalized prob
ability distribution~hierarchy levelk5n21! is composed by
five d’s,

P~n21!~Ji j
~n21!!5P4J

~n21!~p!d~Ji j
~n21!24J!1P2J

~n21!

3~p!d~Ji j
~n21!22J!1P0

~n21!~p!d~Ji j
~n21!!

1P22J
~n21!~p!d~Ji j

~n21!12J!1P24J
~n21!

3~p!d~Ji j
~n21!14J!, ~4.3!

FIG. 4. The total probability of finding frustrated cells, for th
DHL of fractal dimensiond53, at hierarchy levelk5n, as a func-
tion of the initial ferromagnetic coupling weightp of the bimodal
distributionP(n)(Ji j

(n)).
n-
r

ill

where

P4J
~n21!~p!5p814p6~12p!216p4~12p!414p2~12p!6

1~12p!8, ~4.4a!

P2J
~n21!~p!58p7~12p!124p5~12p!3124p3~12p!5

18p~12p!7, ~4.4b!

P0
~n21!~p!524p6~12p!2148p4~12p!4124p2~12p!6,

~4.4c!

P22J
~n21!~p!532p5~12p!3132p3~12p!5, ~4.4d!

P24J
~n21!~p!516p4~12p!4. ~4.4e!

As mentioned above, the limitsp→1 andp→0 are domi-
nated by the strongest renormalized interaction@see
P4J

(n21)(p) in Eq. ~4.4a!# and one gets the trivial resu
@NGS

(n)#J(n)52.
For hierarchy levelk5n22 one gets 17d functions cen-

tered atJi j
(n22)5216J,214J,...,22J,0,2J,...,14J,16J, re-

spectively.
Let us now restrict ourselves top5 1

2 . Contrary to what
happened ford52, our numerical simulations indicate tha
the weight of thed function centered atJi j

(k)50 decreases
with each iteration@see Fig. 3~a!#, characterizing a spin-glas
phase. Therefore, the proliferation ofd functions occurs in
such a way that, at each renormalization step, the ones
responding toJi j

(k)Þ0 will become more and more importan
As a consequence of this, the probability of finding frustra
cells decreases, as exhibited in Fig. 3~b!. Indeed, such results
lead to an exponential decay, as shown in Fig. 5,

F ~n2m!~1/2!;exp@2C~d!m#, ~4.5!

with C(3)50.16460.001.

The average number of ground statesg (n2m)( 1
2 ) @see Fig.

3~c!# shows a little increase form51 ~a direct consequenc

FIG. 5. A semilog plot of the data in Fig. 3~b! for DHLs of
fractal dimensionsd.dl .
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of the appearance of thed at the origin!, but decreases slowly
for m.1. Such a slow decrease reflects the fact thatd53 is
above, but close to, the lower critical dimension.

One may now use the results of the numerical simulati
in order to compute the ground-state complexity of E
~2.11!. Due to the simultaneous decay of the probability

finding frustrated cellsF (k)( 1
2 ), the number of ground state

per frustrated cellg (k)( 1
2 ), and mainly due to the rapid re

duction of the number of sites of the latticeN(k), as the
hierarchy levelk decreases, only the last hierarchies contr
ute significantly to the ground-state complexity. Indeed, o
gets

(
m50

n21

f~n2m! ln g~n2m!5~0.866 4560.000 05!Nc
~n!

1~0.619 5860.000 08!Nc
~n21!

10.514 79Nc
~n22!10.429 02Nc

~n23!

10.358 89Nc
~n24!1¯ .

In the limit n@1 one may use Eq.~2.2c! to get

(
m50

n21

f~n2m! ln g~n2m!5@~0.189 5460.000 01!10.016 94

10.001 7610.000 1810.000 02

1¯#N~n!,

where the error bars due to simulations at hierarchyk5n
21 were discarded~yield contributionsO;1026 in the sum
above!. By truncating the series atk5n23, one gets

(
k51

n

f~k! ln g~k!5~0.208 4220.000 01
10.000 03!N~n!, ~4.6!

where the upper error bar takes into account both series t
cation and numerical simulations, whereas the lower one
responds to the numerical simulations only. The result ab
yields the exponential increase of Eq.~2.12! with h(3)
50.208 4220.000 01

10.000 03. One sees that only the last four hiera
chies contributed significantly to the above estimate ofh(3).
The dominant contributions of the last hierarchies will b
come even more pronounced for higher dimensionalities
we will see next.

B. d54 and 5

As mentioned before, the proliferation ofd functions be-
comes faster asd increases and as a consequence, the p
ability of finding frustrated cells exhibits the exponential d
cay of Eq.~4.5! with higher values of the amplitudeC(d);
Fig. 5 yields the values ofC(d) presented in Table I. One
may now use the results of the numerical simulations to
timate the average number of ground states,
s
.
f

-
e

n-
r-
e

-
as

b-
-

s-

(
m50

n21

f~n2m! ln g~n2m!5~2.014 4560.000 16!Nc
~n!

11.112 30Nc
~n21!10.632 33Nc

~n22!

10.372 70Nc
~n23!1¯ ~d54!,

(
m50

n21

f~n2m! ln g~n2m!5~4.456 2160.000 24!Nc
~n!

11.612 68Nc
~n21!10.665 11Nc

~n22!

1¯ ~d55!,

where we have written the error bars due to numerical sim
lations for hierarchiesk5n only. Using Eq.~2.2c! one gets

(
m50

n21

f~n2m! ln g~n2m!5@~0.236 0760.000 02!10.008 15

10.000 2910.000 01

1¯#N~n! ~d54!,

(
m50

n21

f~n2m! ln g~n2m!5@~0.269 8160.000 01!10.003 05

10.000 041¯#N~n! ~d55!.

Truncating the series atk5n22 (d54) and k5n21 (d
55), one gets

(
k51

n

f~k! ln g~k!5~0.244 5120.000 02
10.000 03!N~n! ~d54!,

~4.7!

TABLE I. The quantitiesC(d) and h(d) which characterize,
respectively, the exponential decay of the probability of findi
frustrated cells with the renormalization step, ford.dl @Eq. ~4.5!#,
and the exponential dependence of the number of ground state
the total number of sites of the DHL@Eq. ~2.12!#. In the third
column, the cased52 is qualitatively distinct from those withd
.dl ; h(d52) @h(d.dl)# refers to the ground states of a par
magnetic~spin-glass! phase. The error bars inC(d) take into ac-
count uncertainties of numerical simulations, as well as of the lin
fits in Fig. 5. The upper error bars inh(d) take into account both
series truuncation~which, in our case, always leads to positive u
certainties!, as well as numerical simulations; the lower oncs re
to numerical simulations only.

d C(d) h(d)

2.00 0.182 2720.000 00
10.000 04

2.58 0.07260.004 0.162 2920.000 01
10.000 02

3.00 0.16460.001 0.208 4220.000 01
10.000 03

4.00 0.44660.013 0.244 5120.000 02
10.000 03

5.00 0.65160.052 0.272 8620.000 01
10.000 05
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(
k51

n

f~k! ln g~k!5~0.272 8620.000 01
10.000 05!N~n! ~d55!,

~4.8!

leading to the values ofh(d) given in Table I. In both case
above, the hierarchy leveln completely dominates the tota
number of ground states; the (n21)th hierarchy leads to
corrections in the third decimal digit ofh(d).

C. d52.58

It is well known that the lower critical dimension of Isin
spin glasses on DHLs isdl'2.5 @39,40#; curiously, this
value is in good agreement with thedl estimates for Bravais
lattices@41#. Therefore, the case of a unit cell of Fig. 1 wi
three branches (d'2.58) is slightly abovedl ; this particular
DHL allows one to study a spin-glass model practicallyat its
lower critical dimension. This is the case for which the pro
ability of finding frustrated cells exhibits the slower decrea
with the renormalization step, as shown in Figs. 3~b! and 5,
yielding a small value ofC(d) ~see Table I!. In addition to
that, the average number of ground states per frustrated
remains nearly unchanged under renormalization, as ca
seen in Fig. 3~c!. The results of the numerical simulation
yield

(
m50

n21

f~n2m! ln g~n2m!5~0.519 8760.000 04!Nc
~n!

1~0.330 5260.000 02!Nc
~n21!

10.284 80Nc
~n22!10.256 14Nc

~n23!

10.234 71Nc
~n24!10.217 59Nc

~n25!

1¯ ,

and after using Eq.~2.2c!,

(
m50

n21

f~n2m! ln g~n2m!5@~0.144 4160.000 01!10.015 30

10.002 2010.000 3310.000 05

10.000 011¯#N~n!.

Truncating the series at hierarchy levelk5n24, one gets

(
k51

n

f~k! ln g~k!5~0.162 2920.000 01
10.000 02!N~n!,

leading to the value ofh(d) in Table I.
Since all numerical simulations, which were possible

be compared with analytic calculations, yielded agreem
up to three decimal digits, we expect that the values p
sented in Table I should represent precise estimates
DHLs. In all cases investigated, the average number
ground states shows an exponential dependence on the
-
e

ell
be

nt
-

or
f
m-

ber of sites. Such a result is in agreement with the grou
state estimates for the infinite-range-interaction model@7,8#.

V. CONCLUSION

We have calculated, by means of both analytical meth
and numerical simulations, the total number of ground sta
for short-range Ising spin glasses on diamond hierarch
lattices of fractal dimensionsd52, 3, 4, 5, and 2.58. Fo
continuous probability distributions, the number of grou
states is finite in the thermodynamic limit. The maximu
degeneracy occurs in the case of a bimodal (6J) distribu-
tion, for a wide range of values of the initial ferromagne
coupling weight aroundp5 1

2 , where the average number o
ground states at hierarchy leveln, @NGS

(n)#J(n), diverges with
the corresponding total number of sites,N(n), as @NGS

(n)#J(n)

;exp@h(d)N(n)#, in the thermodynamic limit. The result fo
d52 corresponds to the degeneracy of the paramagn
phase at zero temperature, since after a few iterations, td
function centered atJi j 50 prevails among the other one
For fractal dimensionsd.dl ~dl'2.5 @40,41#!, our results
correspond to the spin-glass ground-state degeneracy
which the amplitudesh(d) have presented an increase wi
d. In these latter cases, under the renormalization process
proliferation of d functions in the coupling distribution is
faster for higher values ofd, in such a way that, after man
iterations, one approaches a limit that resembles a continu
probability distribution; in addition to that, the total numb
of sites of the lattice decreases rapidly after each renorm
ization step. As a consequence, only a fraction of the to
number of hierarchy levels contributes significantly to t
ground-state degeneracy. In fact, for the casesd54 and 5
the (n21)th hierarchy level leads to corrections in the thi
decimal digit of the correspondingh(d) values calculated
from the highly dominant contribution of thenth hierarchy.

In all cases investigated with the symmetric bimod
probability distribution, the complexityI 5kB ln@NGS

(n)#J(n)

turns out to be an extensive quantity. Such a property is
agreement with the mean-field picture of spin glasses. S
we have analyzed several distinct values ofd, we expect the
result @NGS

(n)#J(n);exp@h(d)N(n)# to hold in general diamond
hierarchical lattices, withh(d) increasing with the fracta
dimensiond (d.dl). It is worth remembering that in the
limit d→`, diamond hierarchical lattices are not expected
reproduce the mean-field results; in fact, they are better
proximations of Bravais lattices for low dimensionalities.

A proper understanding of the ground states in real s
glasses represents a major challenge in the physics of d
dered magnets and has been the focus of attention of m
workers @9–28#. Whether the present results apply, at le
qualitatively in low dimensionalities, to Bravais lattices, is
question which deserves further investigation.
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