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The total number of ground states for short-range Ising spin glasses, defined on diamond hierarchical lattices
of fractal dimensionsd=2, 3, 4, 5, and 2.58, is estimated by means of analytic calculatitmee last
hierarchy levels of thel=2 lattice and numerical simulationdower hierarchies fod=2 and all remaining
cases It is shown that in the case of continuous probability distributions for the couplings, the number of
ground states is finite in the thermodynamic limit. However, for a bimodal probability distrib(tidrwith
probabilitiesp and 1—p, respectively, the average number of ground states is maximum for a wide range of
values ofp aroundp=3 and depends on the total number of sites at hierarchy leve(™. In this case, for
all lattices investigated, it is shown that the ground-state degeneracy behaves [k@)¥p], in the limit
N™ large, whereh(d) is a positive number which depends on the lattice fractal dimension. The probability of
finding frustrated cells at a given hierarchy levelF("(p), is calculated analyticallythree last hierarchy
levels ford=2 and the last hierarchy of the=3 lattice, with O<p=<1), as well as numericallyall other
cases, withp= %). Except ford= 2, in which caseF(”)(%) increases by decreasing the hierarchy level, all other
dimensions investigated present an exponential decreaé@)(r%) for decreasing values of. Ford=2 our
results refer to the paramagnetic phase, whereas for all other dimensions corsidéchcare greater than the
lower critical dimensiord, (d;~2.5)], our results refer to the spin-glass phase at zero temperature; in the latter
casedh(d) increases with the fractal dimension. For 1, only the last hierarchies contribute significantly to
the ground-state degeneracy; such a dominant behavior becomes stronger for high fractal dimensions. The
exponential increase of the number of ground states with the total number of sites is in agreement with the
mean-field picture of spin glass¢§1063-651X%99)07910-4

PACS numbses): 05.50+q, 64.60.Ak, 75.10.Nr, 75.50.Lk

I. INTRODUCTION then mean field predicts an average number of ground states
which diverges exponentially, in the thermodynamic limit,
A satisfactory understanding of short-range spin glasseaccording to Eq(1.1).

[1-3] is still missing, in spite of a considerable amount of  Whether such a mean-field picture prevails in rehlort-
effort dedicated to this problem. Most of the definite resultsrangg systems is a very controversial poja. In particular,
are at mean-field level, based on the solution of the infinitethe ground-state degeneracy and a proper understanding of
range-interaction Sherrington-Kirkpatrick modd|. Such a  the phase-space structure are questions which remain unan-
model predicts a spin-glass phase characterized by a complwered. Unfortunately, exact results for short-range spin
cated free-energy landscape with many minima, properly degjasses are very scarce; such systems on Bravais lattices are,

scribed by an inficnite number of ord_erlparameters,ri.e., @ost of the time, investigated by numerical methods, like
order-parameter functiofi5]. An equivalent approach, as o er_ceries expansions and simulations.

proposed by Thouless, Anderson, and PalriEAP) (6], The search for the ground states of short-range spin

should be to solve the complete set of mean-field equations :
the so-called TAH6] equations. This turns out to be a dif- gﬂaslses has dattradct(;d tzhse Tlttedqt|on ofhm?jny V}/orkers thEOUQh
ficult task, since the average number of solutions of the TAI5 e last t\_/vo eca e[.— ), eading to the development of a
equations grows exponentially with the total number of siteé,alrge variety O.f algorithms. It is well accepted nowadays that
N [7.8], due to the existence of many low-energy metastable states,
separated by energy barriers, the usual Monte Carlo method
finds serious difficulties in providing the true ground states
of spin glasses; one needs alternative numefimabnalyti-
cal) techniques to work at zero temperature. The most intui-
where [ ]; denotes an average over the disorder and tive approach, known as the minimal matching of frustrated
=a(h,T) is a function of both external field and tempera- plaquettes, is based on the idea of Touloi&eand consists
ture T. In the paramagnetic phasey(h,T)=0, whereas in defining a ground-state configuration through a pairwise
«(0,0)=0.20[7,8]. These solutions may not be all physical connection of the frustrated plaquettes by strings, in such a
(some of them may be unstapl#hroughout the spin-glass way as to minimize the total sum of string lengths. A direct
phase, though one can show that they are all stable=@  counting of ground states through this method is feasible for
[7]. If one associates each=0 solution to a ground state, two-dimensional latticef10—12,18, but becomes computa-

[Ng];~expaN), (1.1
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tionally impracticable for three-dimensional systepd®].

Other methods, like mappings into combinatorial optimiza-

tion problemd13,14,20,24, graph expansionsl 8], biologi-

cally motivated algorithm§21-23,26—28 and Monte Carlo

multicanonical technique§l7], have produced significant

progress in the knowledge of spin-glass ground states. The
multicanonical technique of Berg, Hansmann, and CdliK 1
is probably the first Monte Carlo method to generate success-

fully the ground states of the three-dimensional spin

glass; their data are consistent with a simple ground-state

structure, typical of the droplet scaling ansg29-32, al-

though a mean-field-like picture is not ruled out. The recent

algorithm introduced by Hartmani22], combining genetic .
algorithms with cluster-exact approximations, yields ground J

states for three-dimensional spin glasses within a polynomial FIG. 1. The basic cell of the diamond hierarchical lattice with

time [NO(Ns)]' Applylng this methoq _for_hJ spin glasses, fractal dimensiord=(In 2L)/(In 2). The solid circles denote the in-

Hartmaljn found ewdgnce of a nontr|V|aI_ grou_nd-state StrUCtgrnq) sites, whereas the open ones represent the externdtsites

ture (typical of mean-field theopyon a cubic latticd26], but  nected to other cells of the lattice

not on a square lattice8]. Therefore, the study of the spin-

glass ground states appears as a very promising tool for far a DHL with fractal dimensiond=2, and, in Sec. IV,

correct understanding of the structure of the spin-glass phasghose for dimensiond=3, 4, 5, and 2.58. Finally, in Sec. V
Although hierarchical lattices are not Bravais lattices,we present our conclusions.

they are much easier to handiender real-space renormal-

ization group, in such a way that exact resu[t33,34 may Il. MODEL AND FORMALISM

be obtained for short-range systems. For pure systems de- i ) ) i

fined on Bravais lattices, certain renormalization-group equa- Let us consider the Iglng Spin glass, defined through the

tions are obtained through decimation of spins; in the CorreEdwards-Anderson Hamiltonigi38],

sponding hierarchical lattices, such a procedure is exact for

models with discrete classical spin variables, leading, within H=— Z JiSS (§==1), (2.1

a few renormalization steps, to nonproliferated {5

renormalization-group recursion relations connecting twoyhere theJ;j’s represent random quenched coupling con-
successive hierarchy levels. However, for random systemsyants following a certain probability distributid?(J;;). The

the recursion relations depend on random variables, desym Sj, applies to nearest-neighbor pairs of spins on a
scribed by probability distributions. The process of following DHL, generated in such a way that at each step a bond is
the evolution of the probability distributions as the hierarchyreplaced by a diamondlike cell containing parallel
levels change may become a difficult task to carry out exbranches, each with two bonds in serissaling factorb
actly; most of the time one makes use of numerical methods=2), as shown in Fig. 1; its fractal dimension id
Therefore, real-space renormalization-group techniques, foe(In2L)/(In 2). At the zeroth hierarchy level one starts with
random systems on hierarchical lattices, are usually approxa single bond, which is replaced by a single cell at hierarchy
mate; however, depending on the kind of approximationdevel n=1. By following this procedure, one gets for the
involved, the corresponding renormalization-group recipeDHL at its nth hierarchy level the total number of cells
may come up as a good approximation for the hierarchica(N{") and sites ™) given, respectively, by

lattice.

For integer fractal dimensions, hierarchical lattices may NgV=(2L)" =291, (2.29
be considered as approximations of Bravais lattices and .
should lead to some physical insight into the behavior of real NM=24| (2L)"-1 2.2H
spin glasses. In spite of its simplicity, the diamond hierarchi- 2L-1"

cal lattices(DHLs) have been successful in estimating lower
critical dimensions and critical temperatures of Ising spin
glasses[35], almost a decade before their confirmation L L L
through power-series expansidi@] and numerical simula- N~ _——— (21)"=-—— 2L N"=_———(2L)?N{"" V)
tions[37] on Bravais lattices. 2L-1 2L-1 2L-1

In this paper we estimate the average number of ground —.... (2.20
states for nearest-neighbor-interaction Ising spin glasses, de-
fined on DHLs of fractal dimensiord=2, 3, 4, 5, and 2.58. For integer values dod, the results obtained on DHLs may be
For that, we make use of analytic calculations, as well as otonsidered as approximations for the corresponding Bravais
numerical simulations. In the next section we define thdattices.
model and the formalism employed in the calculation of the We start with a DHL at thenth hierarchy level with
ground-state degeneracy. In Sec. Il we present the resuIB(“)(Ji‘j”)) as either a continuous or a bimodal one,

and in the limitn>1, one has
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PMIM)=ps(I =)+ (1-p) s +3). (2.3 [NEL]5m=[T™]3o[ T D] 5n-1)

. . . X[TO= 2] y0-20 [TV ]j0A, (2.6
We will restrict our analysis to zero temperature. The

multiplicity of ground states is produced by frustratit®l ~ where the factoA corresponds to the number of states asso-
effects; let us now adapt this concept for the cell in Fig. 1.ciated to a single bon¢hierarchy level d.
We say that a given cell is frustrated whenever a bond con- Let us now describe how to calculat&€]w (k=n,n
figuration leads to at least one branet(a=1,2,..L) with  —1n-2 . 1). First, leF be the probability of finding a
anarbitrarinessin the state of its internal spin, i.e., the total frystrated cell of the typey, at the hierarchy levek; obvi-
energy of the cell remaining unchanged under the spin flipgsly, F depends on the parameters of the distribution
Therefore, each branch in t_hls situation will contrlbu_te with aP(k)(Ji(_k)) [which, in turn, may depend on the parameters of
factor of 2 for the multiplicity of states of the cell; if a cell the ini{ial distributionP™M(J™M)], e.g., in the+J case[E
containsa branches with such arbitrariness, it will contribute ) _ (k) i ) €9 » SL=a-
F.’=F.’(p). The average number af cells in the

for the total number of ground states of the DHL with a(2_'3)]' P/
multiplicity factor, hierarchy levek is given by

P =NFFP, 2.7)
0,=2% (a=12,.1). (2.9
whereN( is the total number of unit cells, as defined in Eq.
(2.29. Obviously, the total probability of finding a frustrated
cell and the average number of frustrated cells at hierarchy
level k are given, respectively, by

From now on, a given frustrated cell, associated with a mul
tiplicity factor g, , will be referred to as a cell of the type
(or simply, as ana cell). The trivial casego=1 (nonfrus-

trated cell is obviously excluded from the set af cells L L
defined in Eq(2.4). F=> Fl  40=2 ¢gW=NPFk (2.
For a given bond configuration defined BY”(J{), one a1 =1

may count partially the average number of ground states for _ _ .
a DHL at thenth level, by fixing the terminal spins of each If one includes the nonfrustrated cellsssociated probability

unit cell [i.e., the spins that connect the cell to other oned ") one gets the normalization conditiol;,_oF{=1.
(open circles in Fig. Y] and counting the distribution of Hence, the average number of ground states of the DHL at
cells. In this case, only the internal spiffall circles in Fig.  hierarchy levelk, obtained by fixing the terminal spins of
1) of each unit cell will contribute to the multiplicity of €ach unit cell, is given by

ground states. We SI(’I?.” denote the number representing this L

partial counting by T'*™ 1), where[ ];m represents an av- K _ AN

erage over the coupling probability distribution at level [T )]J“)‘}l (o) P = (), 2.9
P™M(J(M). For a hierarchical lattice at itsth level, all unit

cells present one terminal spin that belongs to the {)th  where

level, whereas the other one is associated with a lowest-level L L

hierarchy; the terminal spins that belong to the—(1)th _ (k) (k) ()£ (K)

level become internal ones at levet 1, whereas those of y= H (9o) e )= H (9"« (210
the lowest-level hierarchies become terminal spins at level

n—1; a similar procedure holds for the{2)th level, and One may define the ground-state compleXag],

so on. Due to this, in order to calculate the average number

of ground states at leval, we will take advantage of the

real-space renormalization-group approach for DHLs. In the I =kg IN[NE&]ym=Kg
case of spin glasses, throughout the renormalization process

a= a=

n
InA+ >, |n[r<k>]J<k))
k=1

the probability distribution will change its shape, evolving to n

particular distributions according to the respective phase, or =kg| NA+ D ¢®Iny® ], (2.11
it will approach a “fixed-point” distribution, characteristic k=1

of the corresponding critical fronti¢B5]. The decimation of hich i tensi tity if

the internal spins of the cell in Fig. 1 leads to a renormalized" "o 1S @n eXIENsIve quantity |

coupling between siteisandj [35], [NEL] 5~ exp h(d)N™T], (2.1

1t with h(d) being a constant for each DHL of fractal dimen-
J] :ZZl (130 + 351 =13 =3, (2.5  siond. The quantitykg In ;ﬁk{:(l_(B|n[r<k>]J(k>)/¢<k>] may be
- identified as the partial contribution, per frustrated cell, to the
ground-state complexity, i.e., as the partial complexity per
where J;; and J;; represent the two original coupling con- frustrated cell; from now on, we shall refer tg* as the
stants associated with a given braraonnecting the exter- average number of ground states per frustrated(t=tninal
nal sites of the cell. Following the arguments above, thespins fixed at hierarchy levek.
average number of ground states at hierarchy lavaby be The main difficulty of the present approach consists in
written as calculating[ T™1,u, or equivalently, the probabilities
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from which one may obtain the average numberaofells  §function centered at the origin and one will have multiplic-
using Eq.(2.7). Although this can be done analytically in ity of states produced by zero coupling constants. Since such
some casege.g., for the last hierarchies ofte=2 =J DHL),  frustration effects only occur fok<n (n>1), and consid-

it may become a hard task for DHLs of high fractal dimen-ering the fact that the number of sites of the high hierarchies
sions. However, such quantities can be easily computeis much larger than the ones of the low hierarchis™
through a numerical simulation, as we describe now. For that-22") | one expects to fing™ finite in this limit. For a null
purpose, one should generate a large number of differerfingle bond(hierarchy 0, one has the factofA=4. Putting
disorder sample§J{‘} of a given DHL and count, for each all these results together into EQ.11), one will get a finite
sample, the number af cells in order to computé® and ~ complexity, negligible in the thermodynamic limit.
consequently, all the quantities defined in E@7)—(2.10. For the remainder of this section we will be restricted to
In addition to that, one also needs to renormalize the probthe bimodal probability distribution of Eq2.3). For k=n,
ability distribution, at each hierarchy level, using the recur-there are only two types of frustrated celésach containing
sive relation(2.5); starting the simulation at theth hierar-  one branch with arbitrarinessn such a way that

chy level [with a given distribution P(™(J{”)], one

generate® " 1(J" "), which should be stored to be used FW(p)=F{"(p)=4p*(1-p)+4p(1-p)° g"=2,

at hierarchy n—1, which in its turn, will generate )

p(n—Z)(Ji(jn—Z)), and so on. Instead of working with the which lead to the average number of frustrated cells,

whole DHL, we generate at each hierarchy lel@ number

M of independent unit cells, with coupling constants distrib- " (p)= " (p)=22""V{4p*(1—p)+4p(1-p)3},

uted according t®®(J{Y), from which one may compute 3.

all the quantities in Eq¢2.7)—(2.10, andP®* (I ). In
order to get a good statistics on each hierarchy level, w:%1
repeat this process fa¥ different samplegdifferent se-
qguences of random numberdf one starts with a bimodal
probability distribution at thath hierarchy level, a prolifera-
tion of & functions will occur throughout the renormalization

nd to y(W=2 (independent of). In order to proceed to
ierarchy levelh—1 one needs the renormalized probability
distribution,

P YY) =PYH(p) s - 23) + PG

process; this methc_)d allows one to compute easily the X(P)5(Ji(jn_l))+ P 1(p)
weights of thes functions at each hierarchy levielin order
to obtainP*~ (I V). One expects that i1 and N are X8I +23), (3.2

large enough, such a procedure should give results similar to

those obtained by considering averages over disordaghich has turned into a threg&form, with

samples of the whole DHL. For the results that will be pre-

sented in the next sections, we hgve_ us,_dadc 10" and Ng PO-Y(p)=p*+2p4(1-p)2+(1-p)*, (3.3
=200. For a symmetric bimodal distributid®™(J{") we
have performed some analytic calculations in DHLs of frac-
tal dimensiongdd=2 andd=3; it was possible to check the
accuracy of our simulations in such cases. The scheme de-

PG Y(p)=4p%(1-p)+4p(1-p)°  (3.3D

-1
scribed above yielded estimates B9, v, and thes P M (p)=4p%(1-p)Z (3.30
weights, in agreement up to three decimal digits with the
analytic results. The analysis of all frustrated cells associated to 32

In what follows we shall treat the cask=2 separately leads to
from those wheral is greater than the lower critical dimen-
sion d, (d,~2.5[40-43). In the former, there is no spin- F" Y(p)=4[PY; (p)13P" Y (p)+ 4Py Y (p) [P,V
glass phasg31,35-37,40,4]1 in such a way that any distri- 1 1
bution will converge, under the renormalization process, to a X (p)*+2[P5y Y(p) P[P P(p)]°
single & function centered at the origitharacteristic of a (n-1) (n—1) 2p(n—1)
paramagnetic phasdn the latter ones, all distributions will T4P3 “(P)[Po M (P)]Po57(P)

approach, after many iterations, a continuous distribution +2[P D (p) 1PV (p) 12+ 4PY V()
with increasing variance, associated with the spin-glass
phase{40]. X[PG V(P P+4[PE P (p) PP (p)
+p(-1) 4
ll. CASE d=2 [Po™ " (p]

Let us first consider an arbitrary continuous distributionwhich become, after substituting Eq&8.3 and using the
PM(I(M). Itis clear that for a frustration to occur one must SOftWareMATHEMATICA 3.0 to simplify,
have a branchH with strictly |J;|=|J;;|; since this never -
happens for continuous probability distributions, there will F"""(p)=—16p*(1—3p+4p®—2p®)?(—3+8p—16p
be no frustrated celléF¥=0; a=1,2,..L) at the highest —16p%+ 1200 — 22405+ 22405 — 1287
hierarchies(e.g., n, n—1, and n—2). However, in the
lowest-level hierarchies, the distribution will approximate a +32p%). (3.9
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F(-m)(p) cells at hierarchy levelse=n—m (m=0, 1, and 2, obtained

7 through the method described above. Whpa-1 (or

0.6 m=2 equivalently,p—0) one trivially obtainsF(""™(p)—0 i.e.,
' -0 ¢»(""M_0, whereasA=2; this leads to the expected result

[Ng‘%]J(nFZ. For a wide interval ofp aroundp=3%, one
0.4 Nm=17 notices that the total probability of finding frustrated cells
decreases as one goes from hierarchy laweln— 1, a direct
consequence of the appearance ofdlfienction at the origin
0.2 [see EQ.(3.2)]; however, ifm>1 this probability always
increases. One should notice that the curves in Fig. 2 present
flat maxima, indicating that the maximum ground-state de-
oo generacy occurs within a wide range of valuespairound
00 02 04 06 08 1.0 p=3. In the discussion which follows we will be restricted
p to p=3, although our results apply for a widprinterval.
Even if the number of functions grows very fast in the
FIG. 2. The total probability of finding frustrated cells, for the next steps, one may easily see that the one centeréﬁj‘f)at
DHL of fractal dimensiond=2, at hierarchy levelk=n—m (m =0 will prevail among the others, for a wide range of values
=0,1,2), as a function of the initial ferromagnetic coupling weight of p aroundp= % Indeed, one has the Weigl‘ﬁ’%”)(%)=0,

p of the bimodal distributiorP(™(J{"). o >ed, one !
PO Y(3)=3, andP{" ?(3)=1=0.59375.

One hag{" =2 for all frustrated cells, except for the case  We have performed numerical simulations to compute
of a cell with all four bondsJ{" D=0 {F{"D(p) P§ ™(1/2), F ™(1/2) [and consequently, all the quanti-

=[p8nfl)(p)]4; g(2r171)=4}_ ties defined in Eqs(2.7)—(2.10] for systems up tan=10.
For k=n~—2, the probability distribution is composed by The numerical estimates fon=0, 1, and 2 are in full agree-
five &8s, ment (up to three decimal digijswith the exact results ob-
tained above. The results of our simulations are exhibited in
p(n—2>(Ji(jn—2>):pglg—2>(p)5(‘]i(jn—2>_4‘])+p(23—2> Figs. 3a—3(c); one sees that after a few renormalization

5 ., o steps(roughly, six iterationsthe probability distribution ap-
X(p)3(J =20+ P2 (p)a(If?) proachesP®(J(¥) = 8(J{), characteristic of a paramag-
. P(_”z_f)(p)é(Ji(j”_z)JrZJ) . P(_"4_J2) netic phase. In this limit, only the=2 cells will contribute,

e, FO3)=F¥(3)=1 and so,

X(p)o(IN2+47), 3.
(p)&( ij ) (3.5 qs(k):Nf:k):ZZ(k_l), y(k)=4_ 37
whose weights are functions of those at hierarchy level
—1 [Egs.(3.3)]; after usingMATHEMATICA 3.0 to simplify, The complexity in Eq(2.11) becomes
PY 2 (p)=(1—8p+32p®—80p>+ 152p" — 224p°+ 224p° n -’
‘” I=kg| INA+ D ¢®iny0+ S NKinal, (3.9
— 128"+ 32p8%)2, (3.6a k=n-6 k=1
P1-2)(5) = — 160( — 1+ 130 — 8802+ 4040° — 1408* and using the analytical resultk€n,n—1,n—2), as well
2 (P) o P P ® ® as those obtained from the numerical simulatioks<(
+392(p°—8928°+ 16 84" — 26 408 -2),
+34144°— 357120+ 29 24— 17 92(p*? n—6
(k) (k) = (n) (n—1)
76800 204801+ 2560"5), 3.60 an »M1n yW=0.346 5N" +0.368 24!
Pgn—Z)(p) — 16p2(1_3p+4p2_2p3)2(5_24p+96p2 +0.497 1@\lén_2)+ (0701 52
— 240p°+ 456p* — 67205+ 67205 — 384p” +0.00006N""¥+0.984 7N{""*
+96p8), (3.60 +1.2545N""5+1.373284" 9.

P> 2(p)=—12803(— 1+ 3p—4p2+2p®)3(1— 2p+ 6p? In the equation above, we have written the error bars due to
the numerical simulations for the casen—3 only; as will
—8p3+4p?), (3.60  Dbe seen, the error bars faekxn—2 will not affect the most
significant digits of the final result. In the limit=>1 one has,
P2 (p)=64—1+p)*p*(1-2p+2p?)* (3.60  from Eq.(2.20,

Similarly to what was done for hierarchy levetsand n NW~2(4)"=8NW=2N""V=...
—1, one may calculate("~?)(p). In Fig. 2 we exhibit thep
dependence of the total probability for finding frustratedand then
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(n-m) n—-6
Py any > $™®Iny%=(0.129 96+ 0.034 52+ 0.011 65+ 0.004 11
1.0 L a u C k=n
05 - +0.001 44+ 0.000 13N,
? 42 where we have discarded the error bars due to the numerical
064 o ode4 simulations(which lead to contribution®~ 107 in the sum
md=5 above. The truncation of the series generates an additional
0.4 numerical uncertainty; since all terms in our series are posi-
s % . () tive, such a truncation will underestimate the total sum, lead-
024 ., ing to positive error bars. Using the fact that
0.0 T 1. ; — n/ K i
12345678910 > NFIna=n4Y 4k V=ing(Lan9-1)
m k=1 k=1
F@-m)1/2) ~4.2<10 >N,
1.0-= o 0o o o o one gets
()
[ ] u n
0.8 . > ¢ iInyW=(0.18227 339 W¥NM. (3.9
t+ o i=2 k=1
0.6 « © gzi In the equation above, the upper error bar corresponds to the
. o d=5 series truncation at hierarchy levkEn—6, whereas the
0.4 L e d=2. lower one corresponds to the numerical simulatio® (
’ & e ~10"7). One sees clearly that since the number of sites
" R TS . grows as 4, the contributions of the last hierarchies domi-
0.2 © W nate among the others. Although nearly all cells become
.o (b) frustrated fork<<n— 6, their contribution to the total number
0.0 : — , of ground states is negligible, in the thermodynamic limit.

Considering only the hierarchy levets=n to k=n—6, one
gets the behavior predicted in E¢R.12), within a four-

m decimal-digit accuracy im(2); thecontribution of all other
(n-m) hierarchies will lead to corrections in the fifth decimal digit
yrraR) of h(2).

8.0] It should be noticed that the results above are valid for the
D d=2 zero-temperaturgparamagnetic phasessociated with the

7.0 : d=3 model(2.1), defined on a DHL of fractal dimensiah=2; in

1 " o d=4 the next section, we will estimate the total number of ground
6'0: md=5 states of the spin-glass phase for several DHLs with fractal
50— s d=2. dimensions greater than the lower critical dimengipn

-] (o]
4,0 c 0 0 o0 IV. CASES d>d,

— - [m]

300 o o § & o (©) In this section we consider DHLs with fractal dimensions
2 . o " ® o e d>d, (number of branches=3 in the cell of Fig. 1. It is
204 5 & & 5 5 & & & & & well known that in such cases different symmetric probabil-
al ity distributionsP(™(J{") lead to a spin-glass phase at low
1.0 I L I I temperatures, which extends down to zero temperature

0123456728910 [31,35,40,4] Contrary to what happened in the preceding
m section, now we will calculate the average number of ground

states associated with a spin-glass phase.

FIG. 3. Results from numerical simulations of DHLs of several Any continuousP(”)(Ji(j”)) will converge, after a few it-
fractal dimensiongl, at hierarchy level&=n—m. At the nth hier- erations, to a distributiotvery close to a Gaussian of@9])
archy level, a symmetric bimodap¢3) probability distribution \yith increasing variance, d>d; . Since one has zero prob-
was used.(a) The weight of the § function at the origin ability of finding a branch with |J”|:|‘]”|’ there will be no
P{""™(3) [one should remember that in the cdse3 (d~2.58)  frustrated cells at any hierarchy level. At the zeroth hierar-
there is noé function at the origih (b) The total probability of chy, the single bond may be either ferromagnétio states
finding frustrated cellsF""™(3). (c) The average number of or antiferromagnetidtwo statey and so,A=2 for a given
ground states per frustrated celi""™(3); in the cased=5, the  disorder configuration. Therefore, E@.6) yields only two
point ¥ lies outside the plotted interval{™ ~86). states(related to each other by reflection symmetry
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F(p) -In[ F@-™(1/2)]
1.0 -
1 2.4+
0.8+ -
1 2.0+
0.6+ 5
1 1.6+ .
0.4 - W
| 1.2 4
0.2 ® d=3
| 0.8 o d=4
0.0 L e B B i md=5
0.0 02 04 06 08 1.0 0.4 & d=2.58
P q
0.0 +T—71— T T T 1
FIG. 4. The total probability of finding frustrated cells, for the 01 2 3 4 6 7 8 910

DHL of fractal dimensiord= 3, at hierarchy levek=n, as a func-
tion of the initial ferromagnetic coupling weiglpt of the bimodal
distribution P(M(J{").

T
5
m
FIG. 5. A semilog plot of the data in Fig.(® for DHLs of
) fractal dimensionsi>d, .
[NEym=2 for any continuousP™(J"). (4.1)
) ) ] where
From now on we will be restricted to the bimodal prob-
ability distribution of Eq.(2.3). The proliferation ofé func- PO Y(p)=p8+4p®(1—p)?+6p*(1—p)*+4p3(1—p)®
tions becomes faster when the dimensionality increases; in-

deed, one may easily see that for an arbitrary integer +(1-p)®, (4.43
dimensiond, under the first renormalization transformation, (n-1) ; s 3 3 s
one will go from the bimodal distribution of Eq2.3) to a P>y 7(p)=8p'(1—p)+24p>(1—p)°+24p>(1-p)
composition of 9-Y+1 & functions centered ag(" % 7
=—20@-1)g, —2("’2)J,...,—2J,0,2.J,...,2‘d’2)3,Z(d’ljl)J, +8p(1=p) (449
respectively. PY" Y (p)=24p%(1—p)2+48p*(1—p)*+24p%(1—p)°,
In the limits p— 1 andp— 0 the weight of thes function 0 P ® P P P A F()4_40)
corresponding to the strongest renormalized interaction will
prevail among the others and $8{(p)—0; sinceA=2, P Y(p)=32p%(1—-p)3+32p%(1-p)°, (4.40
one gets alsNTL]jm=2.
Let us analyze first the interestiignd hopefully relevant P P(p)=16p*(1—p)*. (4.49

to real systemscase of ad=3 DHL. _ o )
As mentioned above, the limigs—1 andp—0 are domi-

nated by the strongest renormalized interactipsee

A. d=3
PY " 1(p) in Eq. (4.43] and one gets the trivial result
One gets for hierarchy level [NLL]5m=2.
PM(p)=8p’(1—p)+24p(1—p)2+56p5(1—p)° For hierarchy levek=n—2 one gets 1% functions cen-

tered atd{ " ?=—16J,-14J,...,-2J,0,2J,...,14),16J, re-
+48p*(1—p)*+56p3(1—p)°+24p%(1—p)°® spectively.

7 Let us now restrict ourselves fo=3. Contrary to what
+8p(1-p)’, (4.2) happened fod=2, our numerical simulations indicate that
the weight of thes function centered af{’=0 decreases
with each iteratiorisee Fig. 8a)], characterizing a spin-glass
phase. Therefore, the proliferation éffunctions occurs in
such a way that, at each renormalization step, the ones cor-
responding td{ # 0 will become more and more important.
As a consequence of this, the probability of finding frustrated
cells decreases, as exhibited in Fi¢h)3Indeed, such results
lead to an exponential decay, as shown in Fig. 5,

which is represented in the plot of Fig. 4. Similarly to what
happened in the casg=2, one notices that the maximum
probability of finding frustrated cells occurs within a wide
range of values op aroundp=3%. The renormalized prob-
ability distribution(hierarchy levek=n—1) is composed by
five §'s,

PODIN ) =P P (p) a3 —-4d)+ Py

X(p) 33" —23)+ PP V(p) (A" Y) F("=m(1/2)~exd — C(d)m], (4.5

1) The average number of ground sta$é8 ™ (%) [see Fig.
X(p)o(Jjj 7' +4J), (4.3 3(c)] shows a little increase fan=1 (a direct consequence
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of the appearance of th&at the origin, but decreases slowly TABLE I. The quantitiesC(d) and h(d) which characterize,
for m>1. Such a slow decrease reflects the fact thraB is  respectively, the exponential decay of the probability of finding
above, but close to, the lower critical dimension. frustrated cells with the renormalization step, €+ d, [Eqg. (4.5)],

One may now use the results of the numerical simulationgnd the exponential dependence of the number of ground states on
in order to compute the ground-state complexity of Eq.the total number of sites of the DH[Eq. (2.12]. In the third
(2.11). Due to the simultaneous decay of the probability ofcolumn, the casel=2 is qualitatively distinct from those witd

- (K1 >d;; h(d=2) [h(d>d,)] refers to the ground states of a para-
finding frustrated cell$'"(5), the number of ground states magnetic(spin-glass phase. The error bars i@(d) take into ac-

per frustrated cell(¥ (%), and mainly due to the rapid re- count uncertainties of numerical simulations, as well as of the linear
duction of the number of sites of the lattité¥), as the fits in Fig. 5. The upper error bars m(d) take into account both
hierarchy levek decreases, only the last hierarchies contrib-series truuncatiofwhich, in our case, always leads to positive un-
ute significantly to the ground-state complexity. Indeed, oneertaintieg, as well as numerical simulations; the lower oncs refer

gets to numerical simulations only.
d C(d) h(d)
n—-1
2 ¢(n*m)|n ym*m):(O.86645t0.00005N(Cn) 2.00 0.18227f8288883
m=0
258 0.072-0.004 0.162 29 5553 %2
+(0.61958-0.000 0§N{"~ Y 0.000 03
3.00 0.164-0.001 0.208 42 5000 01
(n-2) (n-3)
+0.514 7N “+0.429 0N, 4.00 0.446-0.013 0.244 51099003
-4
+0.358 8NV - 5.00 0.6510.052 0.27286 09995
In the limit n>1 one may use Eq2.29 to get I
) > ¢ "™ In y("~M=(2.014 45-0.000 16N\
n— m=0

(n=m) |n 4("=M=r(0.189 54+ 0.000 02 + 0.016 94
2, ¢ iy A ) +1.11230N0" Y+ 0.632 32

+0.001 76+0.000 18+-0.000 02 +0.37270N"" 3+ (d=4),
LN
+ ]N ! ! n-1
> "™ in y(""M=(4.456 21+ 0.000 24N
where the error bars due to simulations at hierarkbyn m=0
—1 were discarde_()yield cont_ributionso~10*6 in the sum +1.612 68\12”‘140.665 11\]5;1—2)
above. By truncating the series &t=n—3, one gets
+--- (d=5),
n
2 ¢™M In y¥'=(0.208 428-888 8§)N(n), (4.69  where we have written the error bars due to numerical simu-
k=1 ' lations for hierarchiek=n only. Using Eq.(2.20 one gets
where the upper error bar takes into account both series trun-"y (n—m) (n—m)
cation and numerical simulations, whereas the lower one cor- m§=:0 ¢ Invy =[(0.236 070.000 02+ 0.008 15

responds to the numerical simulations only. The result above

yields the exponential increase of E(.12 with h(3) +0.000 29+ 0.000 01
=0.208 42335933 One sees that only the last four hierar-
chies contributed significantly to the above estimata(&).
The dominant contributions of the last hierarchies will be-

come even more pronounced for higher dimensionalities, as n1
we will see next. ¢""™ n y(""M=[(0.269 82- 0.000 02+ 0.003 05

m=0

+...]N(n) (d=4),

N =
B. d=4 and 5 +0.00004+---IN (d=5).
As mentioned before, the proliferation éffunctions be-  1ncating the series d&=n—2 (d=4) andk=n—1 (d
comes faster ad increases and as a consequence, the proh- 5), one gets
ability of finding frustrated cells exhibits the exponential de- '
cay of Eq.(4.5 with higher values of the amplitudgé(d); n
Fig. 5 yields the values of(d) presented in Table I. One ) 1 K= (0.244 51900003 \() (=4
may now use the results of the numerical simulations to es- 21 ¢ Iny==(0. 550003 (d=4).
timate the average number of ground states, 4.7



PRE 60 GROUND-STATE DEGENERACIES OF ISING SHI. .. 3769

n ber of sites. Such a result is in agreement with the ground-
> ¢ InyW=(0.27286 J39HN™  (d=5), state estimates for the infinite-range-interaction m¢adgg).
k=1

(4.9
V. CONCLUSION

leading to the values di(d) given in Table I. In both cases
above, the hierarchy level completely dominates the total
number of ground states; then{ 1)th hierarchy leads to
corrections in the third decimal digit ¢f(d).

We have calculated, by means of both analytical methods
and numerical simulations, the total number of ground states
for short-range Ising spin glasses on diamond hierarchical
lattices of fractal dimensiond=2, 3, 4, 5, and 2.58. For
continuous probability distributions, the number of ground

C.d=2.58 states is finite in the thermodynamic limit. The maximum
It is well known that the lower critical dimension of Ising degeneracy occurs in the case of a bimodal] distribu-
spin glasses on DHLs isl,~2.5 [39,40; curiously, this tion, for a wide range of values of the initial ferromagnetic
value is in good agreement with tldg estimates for Bravais coupling weight aroungy= 3, where the average number of
lattices[41]. Therefore, the case of a unit cell of Fig. 1 with ground states at hierarchy level [N{2],w, diverges with
three branchesd~2.58) is slightly abovel, ; this particular  the corresponding total number of S|ted;(,”), as[N(”)]J(n)
DHL allows one to study a spin-glass model practicalijts ~ ~exgh(d)N™], in the thermodynamic limit. The result for
lower critical dimension. This is the case for which the prob-d=2 corresponds to the degeneracy of the paramagnetic
ability of finding frustrated cells exhibits the slower decreasephase at zero temperature, since after a few iterationsy the
with the renormalization step, as shown in Fig)3and 5,  function centered af;;=0 prevails among the other ones.
yielding a small value oC(d) (see Table)l In addition to  For fractal dimensionsi>d, (d;~2.5[40,41)), our results
that, the average number of ground states per frustrated cejbrrespond to the spin-glass ground-state degeneracy, for
remains nearly unchanged under renormalization, as can lghich the amplitude$i(d) have presented an increase with
seen in Fig. &). The results of the numerical simulations d. In these latter cases, under the renormalization process, the
yield proliferation of § functions in the coupling distribution is
faster for higher values d, in such a way that, after many
iterations, one approaches a limit that resembles a continuous

n-1 L LT S T "
(N—m) 1y o (N—m) _ ) probability distribution; in addition to that, the total number
mzfo ¢ Iny (0.51987-0.000 04N, of sites of the lattice decreases rapidly after each renormal-
ization step. As a consequence, only a fraction of the total
+(0.33052-0.000 02N{"~ Y number of hierarchy levels contributes significantly to the

(n-2) (n-3) ground-state degeneracy. In fact, for the cadest and 5
+0.284 80N, “'+0.256 1N, the (n— 1)th hierarchy level leads to corrections in the third
(n—4) (n-5) decimal digit of the corresponding(d) values calculated
T0.234 7N 7+ 0.217 5%, from the highly dominant contribution of theth hierarchy.
In all cases investigated with the symmetric bimodal
probability distribution, the complexityl =kg IN[NEL] ;0
turns out to be an extensive quantity. Such a property is in
and after using Eq2.20, agreement with the mean-field picture of spin glasses. Since
we have analyzed several distinct valuesipive expect the
result [N&2]5m~exgh(d)N™] to hold in general diamond
hierarchical lattices, witth(d) increasing with the fractal
mg ¢""™ In y""™=[(0.144 41-0.000 03 +0.015 30 dimensiond (d>d,). It is worth remembering that in the
limit d— o0, diamond hierarchical lattices are not expected to
+0.002 26+ 0.000 33+ 0.000 05 reproduce the mean-field results; in fact, they are better ap-
n proximations of Bravais lattices for low dimensionalities.
+0.000 0%+ JN™. A proper understanding of the ground states in real spin
glasses represents a major challenge in the physics of disor-
dered magnets and has been the focus of attention of many
workers[9—28. Whether the present results apply, at least

n-1

Truncating the series at hierarchy leket n—4, one gets

n qualitatively in low dimensionalities, to Bravais lattices, is a
> ™M Iny=(0.16229 330 93N™, question which deserves further investigation.
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